Do Our Bodies Absorb Genetic Material From Foods/Organisms We Eat? Discussing Some Conflicting Results

in #science7 years ago (edited)

Today lets talk about what happens to the DNA/RNA that enters our bodies from things that we eat!

This post will predominantly focus on work published in the journal RNA on February 25, 2017 titled "Survey of 800+ datasets from human tissue and body fluid reveals XenomiRs are likely artifacts."

As I am certain we are all aware, DNA is transcribed into RNA which is translated into a Protein. Proteins are the molecular machines of life and are responsible for allowing the necessary chemical reactions happen in our cells that are required for the cells to live.

When ever you eat many foods, you are eating a part of another living organism (whether it be a plant, or an animal). These organisms all have genetic material, so they all have these sets of instructions for creating proteins that do a multitude of functions.

Why doesn't that genetic material start producing proteins in our bodies?

It's a good question, because there isn't anything particularly special about another organisms gene sequences, from our own (I mean the sequences are different, but our DNA replication and protein production machinery doesn't care where the DNA comes from, it just sees it and performs its function). It is this aspect of our bodies, and life in general, that allows scientists to produce proteins from various organisms in bacteria in order to study the proteins function. The bacterial machinery don't care that the gene sequence didn't come from a bacteria, they treat the DNA the same.

There are some epigenetic means by which self vs. non self DNA can be discriminated for a cell, which involves methylation patterns on the DNA but this only discriminates against DNA that is wildly different, like bacterial vs eukaryotic. This is a subject for a different post where I talk more about epigenetics (part 2 of a series I have started, but keep getting side tracked into writing other things), I will at some point publish this piece. :D

There were some articles published studying a type of RNA called miRNA

What is miRNA

miRNA or microRNA is a short usually 22 nucleotide long single stranded RNA piece that functions as a part of an RNA silencing complex.[2]


The miRNA complex goes over to RNA transcripts and does this...well not really

What this means is there are proteins in the body whos job is to use these miRNAs to bind to other RNA transcripts and chew them up so the transcripts can not form proteins. That pathway looks like this:


Source

MicroRNAs are chopped out of naturally made RNA transcripts, and are bound to proteins which cells can then use to chop up what ever RNAs the microRNA binds to. Our bodies and cells naturally use this pathway to control how much of our own proteins are expressed (as the cell is a very fine tuned machine and needs specific amounts of things, so these miRNAs serve as a regulatory mechanism). However every other organism that becomes our food also uses these miRNAs. Do these miRNAs get absorbed into our bodies? If they do, can they result in a silencing function for proteins in our cells, that we do not want?

This is the result that a few research groups had reported

Exogenous miRNAs (ones from outside the body) or as they were terming it XenomiRNAs (alien miRNAs) were observed to be present in blood samples. One study reported that a miRNA called MIR168a, which is prominently found in rice, could be absorbed in our guts and enter our blood stream (in people with diets high in rice content). [3] Upon entering the bloodstream the researchers observed that this particular miRNA would cause the RNA transcript of a human protein involved in cholesterol shuttling to get chopped up. This is a pretty huge deal (and potentially very troubling), as it implied that these miRNAs from foreign sources could have an impact on the expression levels of proteins in our bodies.

Some other studies attempted to replicate what these researchers reported, and artificially induce it in animal models. However they were not successful! [4] This lead to people questioning... okay, are these miRNAs really able to be absorbed, or were those first researchers just reporting based on contaminated samples?

Researchers decided to look more into this, and to take advantage of recent advances in DNA sequencing

What Did They Look At?

There are databases where sequencing data has been deposited for anyone to look at and re-analyze. One such type of data-set deposited in these databases is a complete description of all of the various RNA transcripts present in a sample. Researchers used this data from 824 different samples and tried to explore for these XenomiRNAs in the samples. AKA they were looking for whether foreign RNA was present in human RNA sequencing data when it shouldn't be. As if this were a pervasive phenomenon they should be all over the place!

What Did They Find?

XenomiRNAs are absent in brain, liver and blood cells

The authors reported that xenomiRNAs were absent from most human tissue samples. In the samples where they are present, they are very lowly abundant.

XenomiRNAs ARE present in bodily fluids

The "foreign RNAs" were present in 69% of samples, and the most common sources for the foreign RNAs were from rodents, dicots (flowering plants) and insects. The researchers noted that these foreign RNAs were present in most of the studied bodily fluids, although at very low levels.

Most XenomiRNAs originate from sources unlikely to be food

They saw a disproportionately high amount of these foreign RNA's from insect sources, and a disproportionately low amount from plants, or common human meats (birds, fish). They concluded that the composition they saw does not reflect what humans eat (and if it were coming from food sources it should).

Controlled feeding of rats does not change the XenomiRNA composition found present in them

The researchers suspected that if the diets of rats were controlled to favor certain foods, that if miRNA's were being absorbed into the rats bodies then they should see disproportionately high amounts from the foods that they are eating. However no such result was observed, serving as evidence against the reported results discussed earlier.

Authors Conclusions

The authors concluded by stating that it is unlikely that transfer of dietary miRNAs from foods into human bodies occurs. They instead suggest that the detection of these miRNAs in previous studies (and in their own analysis here) is due to the sampling techniques employed when originally obtaining the data sets. AKA the miRNAs detected by previous papers are likely to be the result of contaminating their samples.

Answering The Original Question

Why doesn't foreign DNA start producing proteins and such in our bodies after we eat it? Because it just isn't absorbed in the first place. At least thats what this article argues in favor of.

I am certain, considering the potential ramifications of the other published works, that studies on this will continue, and a lot more than 800ish data sets will be looked through to further solidify whether or not foreign DNA can effect our own bodily functioning. At this point however, the evidence seems fairly strong that the answer is in fact NOPE.

Sources

  1. http://rnajournal.cshlp.org/content/early/2017/01/06/rna.059725.116.full.pdf
  2. https://en.wikipedia.org/wiki/MicroRNA
  3. http://www.nature.com/cr/journal/v22/n1/full/cr2011158a.html
  4. https://www.ncbi.nlm.nih.gov/pubmed/23669076

**All Non Cited Images Are From Pixabay.com And Are Available Under Creative Commons Licenses **

Any Gifs Are From Giphy.com and Are Also Available for Use Under Creative Commons Licences



If you like this work, please consider giving me a follow: @justtryme90. I am here to help spread scientific knowledge and break down primary publications in such a way so as to cut through the jargon and provide you the main conclusions in short and easy to read posts.

Thank you for your continued support of my work! I appreciate all those who follow me (and those who don't too, but I appreciate you much much less ;) ).

I have recently started a streemian a curation trail with the intent to shift more attention on science related postings on steemit. If you would like to join my trail (and it would be wonderful if you did), you can do so with this link:

https://streemian.com/profile/curationtrail/trailing/336

** For this trail, please add the required tag "science" to only trail science content that I vote on **

Thank you for your support!


Sort:  

It looks more like we aren't what we eat. Until more research comes along and switches that around! :D

This is a very interesting research! Does this mean anything for the GMO debate?

Not particularly. With GMO's people are usually concerned with the proteins that are artificially expressed, or the changes that are induced to natural protein expression states. IMO those concerns are valid in some cases, and silly in others (its all dependent on exactly what aspect of the organism was changed). I don't think I have read anyone discussing concerns over the DNA itself, however knowing that our bodies really don't seem to uptake any of the foreign DNA would certainly be good to present to someone who did have such a concern. As any editing to the DNA wouldn't really matter (with regards to our health) because its not being taken in to begin with.

Thanks! As a layman in these matters, I can say that it's easy to mix up some of these terms and assume they're the same, sometimes. Thanks for clarifying :)

This is what I am here for :) Science is so full of jargon!

I may not always know the answer to a scientific question (as science is broad) but I am always happy to try to help clarify anything you come across that you are unsure of.

It looks more like we are exactly what we don't crap out.

I have been curious about this for a while! Good work by RNA Journal, and thank you for putting it all together. I'd be fairly surprised if genetic material does indeed affect us in this manner, but there seems to be fair amount of work pending on the subject yet.

Indeed, the data in the literature seems to be conflicting just a bit. However this particular work was pretty convincing that the prior studies results were a function of contamination. I suspect that a larger study is in the works (based on comments in the conclusions of this publication) that will be more definitive. So hopefully in the next few years we can put the issue to rest (well.. or blow it wide open again).

This is similar to what our biochem instructor told us....everyone is worried about GMO foods and we probably are not absorbing any of this genetic material to begin with haha. Nice article, sir.

The concern many have with GMOs is not the DNA itself but rather the protein changes made to the foods AFIK. If they were worried about the genetic material only then this certainly should serve as evidence to ease people's concerns.

There are still other concerns like environmental effects from pesticides and such that are valid IMO as well.

I will look more into that! I for sure like to see the whole perspective and like to be as informed as I can be for my patients. Will do more research into that realm soon.

From school, they were just speaking about the genetic material itself....it does appear to have other dangers. Thanks for letting me know.

It's very context specific, some changes that people worry about (like the apple that doesn't turn brown, because of a reduction in the expression levels of an oxidase, that modification will not have any effect on anyone) are misplaced concern. Other cases have more validity (expression of insect toxins in the plants etc... and may play a role in human health), and require significantly more study.

Just wanted to clarify my statements a bit.

Very interesting. I am always open to what science has to offer. After reading about it more, I will for sure have to think about the pros and cons. I just didn't read that much about it in the past.

A bit off topic-- the fears of diet soft-drinks were pretty much struck down by my biochem instructor as well. He had a very sarcastic take on the worries people have for artificial sweeteners (I tend to agree with him because he put a lot of work into this realm). It is hard to find the data online for all the great work he did breaking down each molecule process when aspartame breaks down. If I can find his take on this I may be able to write an article on that too!

Do it! I don't know much about the biochemistry of aspartame and the like, so I would be interested to learn more.

seems like an unbiased report. Not enough evidence so far

It looks well done and is fairly comprehensive in the analysis performed. The author's look to followup studies done on larger sample sizes to confirm their findings with certainty, but what they found and discussed looks reasonable based on this study.

Thanks for reading and your comment.

wow this is interesting. I'm glad you looked into it. This should not, however, be confounded with nutrigenomics, by which food constituents impact the way in our genes are expressed. But it guess one few will make the confusion :)

Yep, this is different. I don't think this study is sufficient to close the door even on genetic material uptake, but it looks like they went through this quite rigorously. Nucleic acids are likely broken down too far during the digestive process (by nucleases) and are absorbed as single nucleotides, or perhaps really not absorbed at all but that seems a waste of carbon.

I will wait for the follow up on this study in a year or two which I suspect will lock the lid on this.

Wonderful Post * upvote * resteem
006.gif
Love posts that make me think.

Thank you! I am glad you got something out of it! :)

Thanks a bunch for donateing to me !! I did a thank you post !💙✌❤

It was the right thing to do. Thank you for making so many people so happy around here! If we as a community don't stick up for one another and lend a helping hand then what kind of a community are we?

You are so right ! We must stick together through thick and thin !! 💙✌❤

You didn't want to finish the discussion last time about antigenically indistinguishable so I want to hit you in your face of bullying and pouting with the study which I remarked in my "spammy" arguments which you didn't want to have anything to do with:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160575/
"This means that, predicting an antibody has high affinity for the immunizing antigen is extremely difficult if not impossible."

I understand you engaged into a discussion with false confidence and I took it as someone who was at least cursory informed but it turned out you had absolutely no rearing in the subject of immunization/vaccines. Maybe some redemption lies in digesting that study, as this pertains exactly to your "area" of interest.

Corrected some terrible grammar

Coin Marketplace

STEEM 0.27
TRX 0.11
JST 0.030
BTC 67688.54
ETH 3821.02
USDT 1.00
SBD 3.55